
§1 QPRINT INTRODUCTION 1

1. Introduction.

QPRINT

Encode or decode file as MIME Quoted-Printable (RFC 1521)

by John Walker

This program is in the public domain.

This program is a filter which encodes and decodes files in the “Quoted-Printable” form as defined in
RFC 1521. This is a MIME content encoding intended primarily for text whose content consists primarily
of ASCII printable characters. This encoding distinguishes white space and end of line sequences from other
binary codes which don’t correspond to ASCII printable characters. It’s possible to encode a binary file in
this form by specifying the −b or −−binary and, when appropriate the −p or −−paranoid options, but it’s
a pretty dopey thing to do; base64 encoding is far better when the input data are known to be binary.

#define REVDATE "16th December 2014"

http://www.fourmilab.ch/
http://www.fourmilab.ch/webtools/base64/

2 PROGRAM GLOBAL CONTEXT QPRINT §2

2. Program global context. Let’s start by declaring global definitions and program-wide variables
and including system interface definitions.

#define TRUE 1
#define FALSE 0
#define LINELEN 72 /∗ Encoded line length (max 76) ∗/
#define MAXINLINE 256 /∗ Maximum input line length ∗/
#include "config.h" /∗ System-dependent configuration ∗/
〈Preprocessor definitions 〉
〈System include files 4 〉
〈Windows-specific include files 5 〉
〈Global variables 6 〉
〈Forward function definitions 34 〉

3. Because we may be built on an EBCDIC system, we can’t assume that quoted characters generate
the ASCII character codes we require for output. The following definitions provide the ASCII codes for
characters we need in the program.

#define ASCII_HORIZONTAL_TAB 9 /∗ Horizontal tab ∗/
#define ASCII_LINE_FEED 10 /∗ Line feed ∗/
#define ASCII_CARRIAGE_RETURN 13 /∗ Carriage return ∗/
#define ASCII_SPACE 32 /∗ Space ∗/
#define ASCII_0 48 /∗ Digit 0 ∗/
#define ASCII_EQUAL_SIGN 61 /∗ Equal sign ∗/
#define ASCII_A 65 /∗ Letter A ∗/
#define ASCII_LOWER_CASE_A 97 /∗ Letter a ∗/

4. We include the following POSIX-standard C library files. Conditionals based on a probe of the system
by the configure program allow us to cope with the peculiarities of specific systems.

〈System include files 4 〉 ≡
#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#ifdef HAVE_STRING_H

#include <string.h>

#else
#ifdef HAVE_STRINGS_H

#include <strings.h>

#endif
#endif
#ifdef HAVE_GETOPT

#ifdef HAVE_UNISTD_H

#include <unistd.h>

#endif
#else
#include "getopt.h" /∗ No system getopt–use our own ∗/
#endif

This code is used in section 2.

§5 QPRINT PROGRAM GLOBAL CONTEXT 3

5. The following include files are needed in Win32 builds to permit setting already-open I/O streams to
binary mode.

〈Windows-specific include files 5 〉 ≡
#ifdef _WIN32

#define FORCE_BINARY_IO

#include <io.h>

#include <fcntl.h>

#endif

This code is used in section 2.

6. These variables are global to all procedures; many are used as “hidden arguments” to functions in
order to simplify calling sequences. We’ll declare additional global variables as we need them in successive
sections.

〈Global variables 6 〉 ≡
typedef unsigned char byte; /∗ Byte type ∗/
static FILE ∗fi ; /∗ Input file ∗/
static FILE ∗fo ; /∗ Output file ∗/

See also sections 13, 22, 23, 32, 33, and 44.

This code is used in section 2.

4 ENCODING QPRINT §7

7. Encoding.
The following sections handle encoding the input stream into a Quoted-Printable output stream.

8. Procedure output line break outputs the standard RFC 822 line break sequence of carriage-return,
line-feed and resets the current output line length to zero.

static void output line break (void)
{

static char line break [3] = {ASCII_CARRIAGE_RETURN, ASCII_LINE_FEED, 0};
fputs (line break , fo);
current line length = 0;
}

9. Procedure check line length determines whether chars required will fit in the current line. If not, a
“soft line break” consisting of a trailing ASCII equal sign and the end of line sequence must be appended.
Note that since the final “=” in a soft line break counts against the maximum line length (LINELEN), we must
break a line one character early so as to leave room for a subsequent soft line break. The carriage-return /
line-feed at the end of the line does not count against the maximum line length.

static void check line length (int chars required)
{

if ((current line length + chars required) ≥ (LINELEN − 1)) {
putc(ASCII_EQUAL_SIGN, fo);
output line break ();

}
current line length += chars required ;
}

10. Procedure emit literally outputs a non white space character which doesn’t need encoding to the
output stream.

static void emit literally (int ch)
{

check line length (1);
putc(ch , fo);
}

11. Procedure emit hex encoded outputs character ch encoded as an equal sign followed by two ASCII
characters encoded as hexadecimal.

static void emit hex encoded (int ch)
{

static char hex [16] = {ASCII_0, ASCII_0 + 1, ASCII_0 + 2, ASCII_0 + 3, ASCII_0 + 4, ASCII_0 + 5,
ASCII_0 + 6, ASCII_0 + 7, ASCII_0 + 8, ASCII_0 + 9, ASCII_A, ASCII_A + 1, ASCII_A + 2,
ASCII_A + 3, ASCII_A + 4, ASCII_A + 5};

check line length (3);
putc(ASCII_EQUAL_SIGN, fo);
putc(hex [(ch � 4) & #F], fo);
putc(hex [ch & #F], fo);
}

§12 QPRINT ENCODING 5

12. Procedure encode encodes the file opened as fi into Quoted-Printable, writing the output to fo .
This simply reads the input file character by character and calls emit encoded character to write encoded
characters to the output stream. This isn’t entirely squeaky-clean in that if the character we pass to
emit encoded character is the first character of an end of line sequence, we may look ahead to see if it’s a
CR/LF or LF/CR. But since the code which makes this check pushes back characters not part of a two byte
end of line sequence, there’s no need to worry about such detail at this level.

static void encode (void)
{

int i, ch ;

〈 Initialise character class table 14 〉;
while ((ch = getc(fi)) 6= EOF) {
〈Emit encoded character 20 〉;

}
〈Flush pending white space 24 〉;
〈Flush non-terminated last line 26 〉;
}

13. The character class indicates which rule in the RFC (with some extensions) governs given octet codes
being encoded as Quoted-Printable.

〈Global variables 6 〉 +≡
typedef enum {

Rule 1 ,Rule 2 ,Rule 3 ,Rule 4 ,Rule EBCDIC
} character encoding rule;
static character encoding rule character class [256]; /∗ Character class (by rule in RFC) ∗/

14. Fill the character class array with the classification of characters in terms which rule in the RFC
definition of Quoted-Printable encoding governs their handling. Note that in all code which initialises this
table we must specify ASCII codes numerically rather than as quoted char constants, which will be incorrrect
when the program is built on an EBCDIC system.

〈 Initialise character class table 14 〉 ≡
〈 Initialise Rule 1 characters 15 〉;
〈 Initialise Rule 2 characters 16 〉;
〈 Initialise Rule 3 characters 17 〉;
〈 Initialise Rule 4 characters 18 〉;
〈 Initialise EBCDIC Rule characters 19 〉;

This code is used in section 12.

15. Initially set the character class of all characters to Rule 1 (General 8-bit representation). This is the
default for characters not otherwise specified.

〈 Initialise Rule 1 characters 15 〉 ≡
for (i = 0; i ≤ 255; i++) {

character class [i] = Rule 1 ;
}

This code is used in section 14.

6 ENCODING QPRINT §16

16. Rule 2 governs “Literal representation”–characters with code it’s safe to represent in ASCII.

〈 Initialise Rule 2 characters 16 〉 ≡
for (i = 33; i ≤ 60; i++) {

character class [i] = Rule 2 ;
}
for (i = 62; i ≤ 126; i++) {

character class [i] = Rule 2 ;
}

This code is used in section 14.

17. Rule 3 governs handling of the “white space” character codes for horizontal tab (HT) and space.

〈 Initialise Rule 3 characters 17 〉 ≡
character class [ASCII_HORIZONTAL_TAB] = Rule 3 ; /∗ Horizontal tab ∗/
character class [ASCII_SPACE] = Rule 3 ; /∗ Space ∗/

This code is used in section 14.

18. Rule 4 applies to end of line sequences in the input file, depend upon the host system’s end of
line convention. When encoding pure binary data, these characters must be encoded in general 8-bit
representation according to Rule 1.

〈 Initialise Rule 4 characters 18 〉 ≡
character class [ASCII_LINE_FEED] = Rule 4 ; /∗ Line feed ∗/
character class [ASCII_CARRIAGE_RETURN] = Rule 4 ; /∗ Carriage return ∗/

This code is used in section 14.

19. ASCII characters with no EBCDIC equivalent or whose EBCDIC code differs from that in ASCII must
be quoted according to Rule 1 for maximal compatibility with EBCDIC systems. We flag these characters
(which would otherwise fall under Rule 2) to permit optional encoding for EBCDIC destination systems.

〈 Initialise EBCDIC Rule characters 19 〉 ≡
character class [33] = /∗ ’!’ ∗/
character class [34] = /∗ ’"’ ∗/
character class [35] = /∗ ’#’ ∗/
character class [36] = /∗ ’$’ ∗/
character class [64] = /∗ ’@’ ∗/
character class [91] = /∗ ’[’ ∗/
character class [92] = /∗ ’\\’ ∗/
character class [93] = /∗ ’]’ ∗/
character class [94] = /∗ ’^’ ∗/
character class [96] = /∗ ’\‘’ ∗/
character class [123] = /∗ ’{’ ∗/
character class [124] = /∗ ’|’ ∗/
character class [125] = /∗ ’}’ ∗/
character class [126] = Rule EBCDIC ; /∗ ’~’ ∗/

This code is used in section 14.

§20 QPRINT ENCODING 7

20. Output character ch to the output stream, encoded as required. If paranoid is set, we encode all
printable ASCII character as hexadecimal escapes. If EBCDIC out is set, we quote ASCII characters which
aren’t present in EBCDIC. If binary input is set, end of line sequences are also quoted.

〈Emit encoded character 20 〉 ≡
switch (character class [ch]) {
case Rule 1 : /∗ General 8-bit representation: encode as =XX ∗/
〈Flush pending white space 24 〉;
emit hex encoded (ch);
break;

case Rule 2 : /∗ Literal representation: character doesn’t need encoding ∗/
〈Flush pending white space 24 〉;
if (paranoid) {

emit hex encoded (ch);
}
else {

emit literally (ch);
}
break;

case Rule 3 : /∗ White space: may not occur at end of line ∗/
if (paranoid) {

emit hex encoded (ch);
}
else {
〈Flush pending white space 24 〉; /∗ Flush already-pending white space ∗/
pending white space = ch ; /∗ Set this white space as pending ∗/

}
break;

case Rule 4 : /∗ Line break sequence ∗/
if (binary input) { /∗ If we’re treating the input as a pure binary file, we must encode end of line

characters as hexadecimal rather than converting them to the canonical end of line sequence. ∗/
〈Flush pending white space 24 〉;
emit hex encoded (ch);

}
else {
〈Digest line break sequence 25 〉; /∗ We mustn’t end a line with white space. If there is pending

white space at the end of line, emit it hex encoded before the end of line sequence. ∗/
if (pending white space 6= 0) {

emit hex encoded (pending white space);
pending white space = 0;

}
output line break ();

}
break;

case Rule EBCDIC : 〈Flush pending white space 24 〉; /∗ If we’re generating EBCDIC-compatible
output, quote the ASCII characters which differ in EBCDIC. ∗/

if (EBCDIC out ∨ paranoid) {
emit hex encoded (ch);

}
else {

emit literally (ch);
}
break;

8 ENCODING QPRINT §20

}
This code is used in section 12.

21. Procedure is end of line sequence tests whether the character ch is the first character of an end of
line sequence and, if so, digests any subsequent characters also part of the end of line sequence. Returns
TRUE if an end of line sequence is present and FALSE otherwise.

static int is end of line sequence (int ch)
{

if ((ch ≡ ASCII_CARRIAGE_RETURN) ∨ (ch ≡ ASCII_LINE_FEED)) {
〈Digest line break sequence 25 〉;
return TRUE;

}
return FALSE;
}

22. To comply with Rule 5 (Soft Line Breaks), we need to keep track of the length of output lines as we
assemble them and break them so they don’t exceed LINELEN characters.

〈Global variables 6 〉 +≡
static int current line length = 0; /∗ Length of current line ∗/

23. In the interest of readability, we want to encode white space (Rule 3) characters: spaces and
horizontal tabs as themselves wherever possible, but since we must cope with transfer agents which add
and delete trailing white space at will, we must ensure that the last character of each encoded line is never
significant white space. We accomplish this by deferring output of white space by storing its character code
in pending white space and emitting it unencoded only upon discovering that there’s a subsequent non white
space character. If, at end of line, we discover there’s white space pending, we must encode it as Hex with
emit hex encoded according to Rule 1.

〈Global variables 6 〉 +≡
static int pending white space = 0; /∗ Pending white space character if nonzero ∗/

24. Before emitting a non-end-of-line character, regardless of how encoded, we must check for pending
white space and, if present, flush it to the output stream. Since we’re guaranteed at this point that it isn’t
at the end of line, there’s no need to encode it.

〈Flush pending white space 24 〉 ≡
if (pending white space 6= 0) {

emit literally (pending white space);
pending white space = 0;
}

This code is used in sections 12 and 20.

§25 QPRINT ENCODING 9

25. We must cope with all the end of line sequences which may be used by various systems. We apply the
following rule: an end of line sequence begins with either a carriage return or line feed, optionally followed
by a the other of the potential end of line characters. Any other character (including a duplicate of the
character which introduced the sequence) is pushed back onto the input stream for subsequent processing.
In this code ch is the first character of the end of line sequence.

〈Digest line break sequence 25 〉 ≡
{

int chn = getc(fi);

if (chn 6= EOF) {
if ((chn ≡ ASCII_LINE_FEED) ∨ (chn ≡ ASCII_CARRIAGE_RETURN)) {

if (chn ≡ ch) {
ungetc(chn ,fi);
}

}
else {

ungetc(chn ,fi);
}

}
}

This code is used in sections 20, 21, and 28.

26. If the file being encoded doesn’t end with an end of line sequence, we must emit a soft line break
followed by the canonical end of line sequence to guarantee the last encoded output line is properly termi-
nated.

〈Flush non-terminated last line 26 〉 ≡
if (current line length > 0) {

putc(ASCII_EQUAL_SIGN, fo);
output line break ();
}

This code is used in section 12.

10 DECODING QPRINT §27

27. Decoding.
The following sections handle decoding of a Quoted-Printable input stream into a binary output stream.

28. Procedure decode decodes a Quoted-Printable encoded stream from fi and emits the binary result on
fo .

static void decode (void)
{

int ch , ch1 , ch2 ;

while ((ch = read decode character ()) 6= EOF) {
switch (ch) {
case ASCII_EQUAL_SIGN: /∗ ‘=’: Encoded character or soft end of line ∗/
〈Decode equal sign escape 29 〉;
if (ch 6= EOF) {

putc(ch , fo);
}
break;

case ASCII_CARRIAGE_RETURN: /∗ CR: End of line sequence ∗/
case ASCII_LINE_FEED: /∗ LF: End of line sequence ∗/
〈Digest line break sequence 25 〉;
putc(’\n’, fo); /∗ Output end of line in system EOL idiom ∗/
break;

default: /∗ Character not requiring encoding ∗/
putc(ch , fo);
break;

}
}
}

§29 QPRINT DECODING 11

29. When we encounter an equal sign in the input stream there are two possibilities: it may introduce
two characters of ASCII representing an 8-bit octet in hexadecimal or, if followed by an end of line sequence,
it’s a “soft end-of-line” introduced to avoid emitting a long longer than the number of chracters prescribed
by the LINELEN constraint. We look forward in the input stream and return EOF if this equal sign denotes
a soft end-of-line or the character code given by the two subsequent hexadecimal digits. While the RFC
prescribes that all letters representing hexadecimal digits be upper case, conforming to the recommendation
for “robust implementations”, we accept lower case letters in their stead.

〈Decode equal sign escape 29 〉 ≡
ch1 = read decode character ();
〈 Ignore white space after soft line break 31 〉;
if (ch1 ≡ EOF) {

fprintf (stderr , "Error: unexpected end of file after soft line break sequence at byte %"
FILE_ADDRESS_FORMAT_LENGTH

"u (0x%"

FILE_ADDRESS_FORMAT_LENGTH

"X) of input.\n", decode input stream position − 1, decode input stream position − 1);
decode errors ++;
}
if (is end of line sequence (ch1) ∨ (ch1 ≡ EOF)) {

ch = EOF;
}
else {

int n1 , n2 ;

n1 = hex to nybble (ch1);
ch2 = read decode character ();
n2 = hex to nybble (ch2);
if (n1 ≡ EOF ∨ n2 ≡ EOF) {
〈Handle erroneous escape sequences 38 〉;
decode errors ++;

}
ch = (n1 � 4) | n2 ;
}

This code is used in section 28.

30. There are lots of ways of defining “ASCII white space,” but RFC 1521 explicitly states that only
ASCII space and horizontal tab characters are deemed white space for the purposes of Quoted-Printable
encoding.

〈Character is white space 30 〉 ≡
((ch1 ≡ ASCII_SPACE) ∨ (ch1 ≡ ASCII_HORIZONTAL_TAB))

This code is used in section 31.

12 DECODING QPRINT §31

31. Some systems pad text lines with white space (ASCII blank or horizontal tab characters). This may
result in a line encoded with a “soft line break” at the end appearing, when decoded, with white space
between the supposedly-trailing equal sign and the end of line sequence. If white space follows an equal sign
escape, we ignore it up to the beginning of an end of line sequence. Non-white space appearing before we
sense the end of line is an error; these erroneous characters are ignored.

〈 Ignore white space after soft line break 31 〉 ≡
while (〈Character is white space 30 〉) {

ch1 = read decode character ();
if (is end of line sequence (ch1)) {

break;
}
if (¬〈Character is white space 30 〉) {

if (ch1 ≡ EOF) {
break;

}
〈Report invalid character after soft line break 39 〉;
decode errors ++;
ch1 = ASCII_SPACE; /∗ Fake a space and soldier on ∗/

}
}

This code is used in section 29.

32. On systems which support 64-bit file I/O, we want to be able to issue error messages with addresses
that aren’t truncated at 32 bits, but we may find ourselves confronted with a compiler which doesn’t support
unsigned long long 64-bit integers, or on a system such as the Alpha where unsigned long is itself 64
bits in length. The configure script determines the length of the unsigned long long and unsigned
long types, setting the length of unsigned long long to 0 if the compiler does not support it. Based on
the results of these tests, we define the type to be used for file addresses and which format to use when
printing them.

〈Global variables 6 〉 +≡
#if (SIZEOF_UNSIGNED_LONG ≡ 8) ∨ (SIZEOF_UNSIGNED_LONG_LONG ≡ 0)

/∗ unsigned long on this machine is 64 bits or the compiler doesn’t support unsigned long long.
In either of these rather different cases we want to use unsigned long for file addresses. ∗/

typedef unsigned long file address type;
#define FILE_ADDRESS_FORMAT_LENGTH "l"

#else /∗ Compiler supports unsigned long long and unsigned long is not 64 bits. Use unsigned
long long for file addresses. ∗/

typedef unsigned long long file address type;
#define FILE_ADDRESS_FORMAT_LENGTH "ll"

#endif

33. Error messages during the decoding process are much more useful if they identify the position in the
stream where the error was identified. We keep track of the position in the stream in decode input stream position .

We use the variable decode errors to keep track of the number of errors in the decoding process. Even
if the user has suppressed error messages, this permits us to return a status indicating that one or more
decoding errors occurred.

〈Global variables 6 〉 +≡
static file address type decode input stream position = 0;
static long decode errors = 0;

§34 QPRINT DECODING 13

34. We need to pre-declare the function read decode character for those who call it before we introduce
it in the source code.

〈Forward function definitions 34 〉 ≡
static int read decode character (void);

See also section 36.

This code is used in section 2.

35. Procedure read decode character reads the next character from the input stream and advances the
position counter in the stream, decode input stream position .

static int read decode character (void)
{

int ch ;

ch = getc(fi);
if (ch 6= EOF) {

decode input stream position ++;
}
return ch ;
}

36. We also must pre-declare hex to nybble for the same reasons.

〈Forward function definitions 34 〉 +≡
static int hex to nybble (int ch);

37. Procedure hex to nybble converts an ASCII hexadecimal digit character to its binary 4 bit value. An
argument which cannot be converted returns EOF.

static int hex to nybble (int ch)
{

if ((ch ≥ ASCII_0) ∧ (ch ≤ (ASCII_0 + 9))) {
return ch − ’0’;

}
else if ((ch ≥ ASCII_A) ∧ (ch ≤ (ASCII_A + 5))) {

return 10 + (ch − ASCII_A);
}
else if ((ch ≥ ASCII_LOWER_CASE_A) ∧ (ch ≤ (ASCII_LOWER_CASE_A + 5))) {

return 10 + (ch − ASCII_LOWER_CASE_A);
}
return EOF;
}

14 DECODING QPRINT §38

38. If we encounter an equal sign that isn’t either at the end of a line (denoting a “soft line break”)
or followed by two hexadecimal digits, we increment the number of decoding errors detected and, unless
suppressed by the −n option, as indicated by the variable errcheck , issue an error message on standard
output. We print the escape sequence as ASCII characters if possible, but if we’re running on a non-ASCII
system or one or more of the characters following the equal sign isn’t printable, we show the hexadecimal
values of the characters.

〈Handle erroneous escape sequences 38 〉 ≡
if (errcheck) {

if (〈System character code is ASCII 41 〉 ∧ Character is printable ISO 8859 (ch1) ∧
Character is printable ISO 8859 (ch2)) {

fprintf (stderr , "Error: bad equal sign escape \"=%c%c\" at byte %"
FILE_ADDRESS_FORMAT_LENGTH

"u (0x%"

FILE_ADDRESS_FORMAT_LENGTH

"X) of input.\n", ch1 , ch2 , decode input stream position −3, decode input stream position −3);
}
else { /∗ Characters after the equal sign are not printable. Display them in hexadecimal. ∗/

fprintf (stderr , "Error: bad equal sign escape \"= 0x%02X 0x%02X\" at byte %"
FILE_ADDRESS_FORMAT_LENGTH

"u (0x%"

FILE_ADDRESS_FORMAT_LENGTH

"X) of input.\n", ch1 , ch2 , decode input stream position −3, decode input stream position −3);
}
}

This code is used in section 29.

39. Another possible decoding error is the presence of a non white space character between the equal sign
introducing a soft line break and the end of line sequence which follows it. In order to cope with systems
which may pad text lines with white space, white space is permitted between the trailing equal sign and end
of line, but once we’ve seen one white space character following an equal sign, every subsequent character
up to the end of line must also be white space. In the following code ch1 is the invalid character detected
in the soft line break.

〈Report invalid character after soft line break 39 〉 ≡
if (errcheck) {

if (〈System character code is ASCII 41 〉 ∧ Character is printable ISO 8859 (ch1)) {
fprintf (stderr , "Error: invalid character \"%c\" in soft line break sequence at byte %"

FILE_ADDRESS_FORMAT_LENGTH

"u (0x%"

FILE_ADDRESS_FORMAT_LENGTH

"X) of input.\n", ch1 , decode input stream position − 1, decode input stream position − 1);
}
else { /∗ Invalid character is not not printable. Display it in hexadecimal. ∗/

fprintf (stderr ,
"Error: invalid character \"0x%02X\" in soft line break sequence at byte %"

FILE_ADDRESS_FORMAT_LENGTH

"u (0x%"

FILE_ADDRESS_FORMAT_LENGTH

"X) of input.\n", ch1 , decode input stream position − 1, decode input stream position − 1);
}
}

This code is used in section 31.

§40 QPRINT UTILITIES 15

40. Utilities.

41. The vast majority of users will run this program on ASCII-based systems, but we must also cope
with EBCDIC systems. When issuing error messages, we’d like to be able to include ASCII characters from
the input stream in certain cases, but we can’t do this on EBCDIC systems without including a necessarily
incomplete conversion table which would be absurdly excess baggage for a little program like this. We
compromise by falling back to hexadecimal display when running on non-ASCII systems. But how do we
discern this? The following expression tests a compiler-generated character for equality with its character
code in ASCII. This will fail on EBCDIC systems, permitting us to generate the variant messages.

〈System character code is ASCII 41 〉 ≡
(’a’ ≡ #61)

This code is cited in section 42.

This code is used in sections 38 and 39.

42. Even on an ASCII-based system we mustn’t include non-printing characters in error messages. Once
we’ve established the system is ASCII using 〈System character code is ASCII 41 〉 we must further test that
the character falls within the printable range for ISO 8859 Latin-1.

#define Character is printable ISO 8859 (c) (((((c) ≥ #20) ∧ ((c) ≤ #7E)) ∨ ((c) ≥ #A1)))

16 COMMAND LINE PARSING QPRINT §43

43. Command line parsing.

44. The following global variables represent command-line options.

〈Global variables 6 〉 +≡
static int decoding = FALSE; /∗ Decoding (TRUE) or encoding (FALSE) ∗/
static int encoding = FALSE; /∗ Encoding (TRUE) or decoding (FALSE) ∗/
static int binary input = FALSE; /∗ Treat input as a binary file ? ∗/
static int errcheck = TRUE; /∗ Check decode input for errors ? ∗/
static int EBCDIC out = FALSE; /∗ Generate EBCDIC-compatible output ∗/
static int paranoid = FALSE; /∗ Paranoid output: quote everything ∗/

§45 QPRINT COMMAND LINE PARSING 17

45. We use getopt to process command line options. This permits aggregation of options without
arguments and both −darg and −d arg syntax. We support GNU-style “−−” extended options which aren’t
directly supported by getopt through the following subterfuge: if the main option letter is “−−”, we convert
the following letter to upper case, which permits us to discriminate it in the option processing case statement,
which in many cases will simply be a fall-through into the same code we use for the regular option beginning
with a single minus sign. If we need to further disambiguate extended options, this must be done in the case
processing the extended option.

〈Process command-line options 45 〉 ≡
for (; ;) {

opt = getopt (argc , argv , "bdeinpu−:");
if (opt ≡ −1) {

break;
}
if (opt ≡ ’−’) {

/∗ If this is an extended “−−” option, take the first letter (if it so be) after the second dash and
translate it to upper case so we can distinguish it in the case statement which follows. ∗/

if (islower (optarg [0])) {
opt = toupper (optarg [0]);

}
}
switch (opt) {
case ’b’: /∗ −b −−binary Binary input file ∗/
case ’B’:

binary input = TRUE;
break;

case ’C’: /∗ −−copyright ∗/
printf ("This program is in the public domain.\n");
return 0;

case ’d’: /∗ −d −−decode Decode ∗/
case ’D’:

decoding = TRUE;
break;

case ’e’: /∗ −e Encode ∗/
encoding = TRUE;
break;

case ’E’: /∗ −−encode or −−ebcdic ∗/
〈Process extended “−−e” options 46 〉;
break;

case ’H’: /∗ −−help ∗/
usage ();
return 0;

case ’i’: /∗ −i EBCDIC-compatible output ∗/
EBCDIC out = TRUE;
break;

case ’n’: /∗ −n −−noerrcheck Suppress error checking ∗/
case ’N’:

errcheck = FALSE;
break;

case ’p’: /∗ −p −−paranoid Paranoid: quote even printable characters ∗/
case ’P’:

paranoid = TRUE;
break;

18 COMMAND LINE PARSING QPRINT §45

case ’u’: /∗ −u Print how-to-call information ∗/
case ’?’:

usage ();
return 0;

case ’V’: /∗ −−version ∗/
〈Show program version information 50 〉;
return 0;

default: /∗ Invalid extended option ∗/
fprintf (stderr , "Invalid option: −−%s\n", optarg);
return 2;

}
}

This code is used in section 51.

46. There are two extended options which begin with “−−e”: −−ebcdic and −−encode. We must
distinguish them by looking at the second letter of the option.

〈Process extended “−−e” options 46 〉 ≡
switch (optarg [1]) {
case ’b’: /∗ −−ebcdic ∗/

EBCDIC out = TRUE;
break;

case ’n’: /∗ −−encode ∗/
encoding = TRUE;
break;

default: fprintf (stderr , "Invalid option: −−%s\n", optarg);
return 2;
}

This code is used in section 45.

47. After processing the command-line options, we need to check them for consistency, for example, that
the user hasn’t simultaneously asked us to encode and decode a file.

〈Check options for consistency 47 〉 ≡
if (encoding ∧ decoding) {

fprintf (stderr , "Cannot simultaneously encode and decode.\n");
return 2;
}
if (¬(encoding ∨ decoding)) {

fprintf (stderr , "Please specify −−encode (−e) or −−decode (−d).\n");
return 2;
}

This code is used in section 51.

§48 QPRINT COMMAND LINE PARSING 19

48. This code is executed after getopt has completed parsing command line options. At this point the
external variable optind in getopt contains the index of the first argument in the argv [] array. The first two
arguments specify the input and output file. If either argument is omitted or “−”, standard input or output
is used.

On systems which distinguish text and binary I/O (for end of line translation), we always open the input
file in binary mode. The output file is opened in binary mode when encoding (since the standard requires
RFC 822 CR/LF end of line convention regardless of that used by the host system), but text mode while
decoding, since output should conform to the system’s end of line convention.

〈Process command-line file name arguments 48 〉 ≡
f = 0;
for (; optind < argc ; optind ++) {

cp = argv [optind];
switch (f) { /∗ * Warning! On systems which distinguish text mode and binary I/O (MS-DOS,

Macintosh, etc.) the modes in these open statements will have to be made conditional based
upon whether an encode or decode is being done, which will have to be specified earlier. But it’s
worse: if input or output is from standard input or output, the mode will have to be changed on
the fly, which is generally system and compiler dependent. ’Twasn’t me who couldn’t conform
to Unix CR/LF convention, so don’t ask me to write the code to work around Apple and
Microsoft’s incompatible standards. * ∗/

case 0:
if (strcmp(cp , "−") 6= 0) {

if ((fi = fopen (cp ,
#ifdef FORCE_BINARY_IO

"rb"

#else
"r"

#endif
)) ≡ Λ) {

fprintf (stderr , "Cannot open input file %s\n", cp);
return 2;
}

#ifdef FORCE_BINARY_IO

in std = FALSE;
#endif

}
f++;
break;

case 1:
if (strcmp(cp , "−") 6= 0) {

if ((fo = fopen (cp ,
#ifdef FORCE_BINARY_IO

(decoding ∧ (¬binary input)) ? "w" : "wb"
#else

"w"

#endif
)) ≡ Λ) {

fprintf (stderr , "Cannot open output file %s\n", cp);
return 2;
}

#ifdef FORCE_BINARY_IO

out std = FALSE;
#endif

20 COMMAND LINE PARSING QPRINT §48

}
f++;
break;

default: fprintf (stderr , "Too many file names specified.\n");
usage ();
return 2;

}
}

This code is used in section 51.

49. Procedure usage prints how-to-call information.

static void usage (void)
{

printf ("%s −− Encode/decode file as Quoted−Printable. Call:\n", PRODUCT);
printf (" %s [−e / −d] [options] [infile] [outfile]\n", PRODUCT);
printf ("\n");
printf ("Options:\n");
printf (" −b, −−binary Treat input as pure binary file\n");
printf (" −−copyright Print copyright information\n");
printf (" −d, −−decode Decode Quoted−Printable encoded file\n");
printf (" −e, −−encode Encode file into Quoted−Printable\n");
printf (" −i, −−ebcdic EBCDIC−compatible encoding output\n");
printf (" −n, −−noerrcheck Ignore errors when decoding\n");
printf (" −p, −−paranoid Paranoid: quote even printable characters\n");
printf (" −u, −−help Print this message\n");
printf (" −−version Print version number\n");
printf ("\n");
printf ("by John Walker\n");
printf ("http://www.fourmilab.ch/\n");
}

50. Show program version information in response to the −−version option.

〈Show program version information 50 〉 ≡
printf ("%s %s\n", PRODUCT, VERSION);
printf ("Last revised: %s\n", REVDATE);
printf ("The latest version is always available\n");
printf ("at http://www.fourmilab.ch/webtools/qprint/\n");

This code is used in section 45.

§51 QPRINT MAIN PROGRAM 21

51. Main program.
The exit status returned by the main program is 0 for normal completion, 1 if an error occurred in decoding,

and 2 for invalid options or file name arguments.

int main (int argc , char ∗argv [])
{

extern char ∗optarg ; /∗ Imported from getopt ∗/
extern int optind ;
int f, opt ;

#ifdef FORCE_BINARY_IO

int in std = TRUE, out std = TRUE;
#endif

char ∗cp ; /∗ Some C compilers don’t allow initialisation of static variables such as fi and fo with
their library’s definitions of stdin and stdout , so we initialise them at runtime. ∗/

fi = stdin ;
fo = stdout ;
〈Process command-line options 45 〉;
〈Check options for consistency 47 〉;
〈Process command-line file name arguments 48 〉;
〈Force binary I/O where required 52 〉;
if (decoding) {

decode ();
}
else {

encode ();
}
return decode errors ? 1 : 0;
}

52. On Win32, if a binary stream is the default of stdin or stdout , we must place this stream, opened in
text mode (translation of CR to CR/LF) by default, into binary mode (no EOL translation). If you port this
code to other platforms which distinguish between text and binary file I/O (for example, the Macintosh),
you’ll need to add equivalent code here.

The following code sets the already-open standard stream to binary mode on Microsoft Visual C 5.0
(Monkey C). If you’re using a different version or compiler, you may need some other incantation to cancel
the text translation spell.

〈Force binary I/O where required 52 〉 ≡
#ifdef FORCE_BINARY_IO

if (in std) {
#ifdef _WIN32

setmode (fileno(fi), O_BINARY);
#endif
}
if (((¬decoding) ∨ binary input) ∧ out std) {

#ifdef _WIN32

setmode (fileno(fo), O_BINARY);
#endif
}

#endif

This code is used in section 51.

22 INDEX QPRINT §53

53. Index. The following is a cross-reference table for qprint. Single-character identifiers are not
indexed, nor are reserved words. Underlined entries indicate where an identifier was declared.

fileno : 52.
setmode : 52.
_WIN32: 5, 52.
argc : 45, 48, 51.
argv : 45, 48, 51.
ASCII_A: 3, 11, 37.
ASCII_CARRIAGE_RETURN: 3, 8, 18, 21, 25, 28.
ASCII_EQUAL_SIGN: 3, 9, 11, 26, 28.
ASCII_HORIZONTAL_TAB: 3, 17, 30.
ASCII_LINE_FEED: 3, 8, 18, 21, 25, 28.
ASCII_LOWER_CASE_A: 3, 37.
ASCII_SPACE: 3, 17, 30, 31.
ASCII_0: 3, 11, 37.
binary input : 20, 44, 45, 48, 52.
byte: 6.
Cannot both encode and decode: 47.
Cannot open input file: 48.
Cannot open output file: 48.
ch : 10, 11, 12, 20, 21, 25, 28, 29, 35, 36, 37.
character class : 13, 14, 15, 16, 17, 18, 19, 20.
character encoding rule: 13.
Character is printable ISO 8859 : 38, 39, 42.
chars required : 9.
check line length : 9, 10, 11.
chn : 25.
ch1 : 28, 29, 30, 31, 38, 39.
ch2 : 28, 29, 38.
cp : 48, 51.
current line length : 8, 9, 22, 26.
decode : 28, 51.
decode errors : 29, 31, 33, 51.
decode input stream position : 29, 33, 35, 38, 39.
decoding : 44, 45, 47, 48, 51, 52.
EBCDIC out : 20, 44, 45, 46.
emit encoded character : 12.
emit hex encoded : 11, 20, 23.
emit literally : 10, 20, 24.
encode : 12, 51.
encoding : 44, 45, 46, 47.
EOF: 12, 25, 28, 29, 31, 35, 37.
errcheck : 38, 39, 44, 45.
Error: bad equal sign escape: 38.
Error: invalid . . . soft line break: 39.
f : 51.
FALSE: 2, 21, 44, 45, 48.
fi : 6, 12, 25, 28, 35, 48, 51, 52.
FILE_ADDRESS_FORMAT_LENGTH: 29, 32, 38, 39.
file address type: 32, 33.
fo : 6, 8, 9, 10, 11, 12, 26, 28, 48, 51, 52.
fopen : 48.

FORCE_BINARY_IO: 5, 48, 51, 52.
fprintf : 29, 38, 39, 45, 46, 47, 48.
fputs : 8.
getc : 12, 25, 35.
getopt : 45, 48, 51.
HAVE_GETOPT: 4.
HAVE_STRING_H: 4.
HAVE_STRINGS_H: 4.
HAVE_UNISTD_H: 4.
hex : 11.
hex to nybble : 29, 36, 37.
i: 12.
in std : 48, 51, 52.
Invalid option: 45, 46.
is end of line sequence : 21, 29, 31.
islower : 45.
line break : 8.
LINELEN: 2, 9, 22, 29.
main : 51.
MAXINLINE: 2.
n1 : 29.
n2 : 29.
O_BINARY: 52.
opt : 45, 51.
optarg : 45, 46, 51.
optind : 48, 51.
out std : 48, 51, 52.
output line break : 8, 9, 20, 26.
paranoid : 20, 44, 45.
pending white space : 20, 23, 24.
Please specify encode or decode: 47.
printf : 45, 49, 50.
PRODUCT: 49, 50.
putc : 9, 10, 11, 26, 28.
read decode character : 28, 29, 31, 34, 35.
REVDATE: 1, 50.
Rule EBCDIC : 13, 19, 20.
Rule 1 : 13, 15, 20.
Rule 2 : 13, 16, 20.
Rule 3 : 13, 17, 20, 23.
Rule 4 : 13, 18, 20.
SIZEOF_UNSIGNED_LONG: 32.
SIZEOF_UNSIGNED_LONG_LONG: 32.
stderr : 29, 38, 39, 45, 46, 47, 48.
stdin : 51, 52.
stdout : 51, 52.
strcmp : 48.
Too many file names: 48.
toupper : 45.
TRUE: 2, 21, 44, 45, 46, 51.

§53 QPRINT INDEX 23

ungetc : 25.
usage : 45, 48, 49.
Usage...: 49.
VERSION: 50.

24 NAMES OF THE SECTIONS QPRINT

〈Character is white space 30 〉 Used in section 31.

〈Check options for consistency 47 〉 Used in section 51.

〈Decode equal sign escape 29 〉 Used in section 28.

〈Digest line break sequence 25 〉 Used in sections 20, 21, and 28.

〈Emit encoded character 20 〉 Used in section 12.

〈Flush non-terminated last line 26 〉 Used in section 12.

〈Flush pending white space 24 〉 Used in sections 12 and 20.

〈Force binary I/O where required 52 〉 Used in section 51.

〈Forward function definitions 34, 36 〉 Used in section 2.

〈Global variables 6, 13, 22, 23, 32, 33, 44 〉 Used in section 2.

〈Handle erroneous escape sequences 38 〉 Used in section 29.

〈 Ignore white space after soft line break 31 〉 Used in section 29.

〈 Initialise EBCDIC Rule characters 19 〉 Used in section 14.

〈 Initialise Rule 1 characters 15 〉 Used in section 14.

〈 Initialise Rule 2 characters 16 〉 Used in section 14.

〈 Initialise Rule 3 characters 17 〉 Used in section 14.

〈 Initialise Rule 4 characters 18 〉 Used in section 14.

〈 Initialise character class table 14 〉 Used in section 12.

〈Process command-line file name arguments 48 〉 Used in section 51.

〈Process command-line options 45 〉 Used in section 51.

〈Process extended “−−e” options 46 〉 Used in section 45.

〈Report invalid character after soft line break 39 〉 Used in section 31.

〈Show program version information 50 〉 Used in section 45.

〈System character code is ASCII 41 〉 Cited in section 42. Used in sections 38 and 39.

〈System include files 4 〉 Used in section 2.

〈Windows-specific include files 5 〉 Used in section 2.

QPRINT

Section Page

Introduction . 1 1

Program global context . 2 2

Encoding . 7 4

Decoding . 27 10

Utilities . 40 15

Command line parsing . 43 16

Main program . 51 21

Index . 53 22

	Introduction
	Program global context
	Encoding
	Decoding
	Utilities
	Command line parsing
	Main program
	Index
	Names of the sections
	Character is white space
	Check options for consistency
	Decode equal sign escape
	Digest line break sequence
	Emit encoded character
	Flush non-terminated last line
	Flush pending white space
	Force binary I/O where required
	Forward function definitions
	Global variables
	Handle erroneous escape sequences
	Ignore white space after soft line break
	Initialise EBCDIC Rule characters
	Initialise Rule 1 characters
	Initialise Rule 2 characters
	Initialise Rule 3 characters
	Initialise Rule 4 characters
	Initialise character class table
	Process command-line file name arguments
	Process command-line options
	Process extended ``--e'' options
	Report invalid character after soft line break
	Show program version information
	System character code is ASCII
	System include files
	Windows-specific include files

